HAEMATOLOGICAL AND SERUM BIOCHEMICAL ALTERATIONS IN UTERINE INERTIA AFFECTED BITCHES

*M.S. Bawaskar¹ and S.K. Sahatpure²

¹Ph.D. Scholar, ²Associate Professor & Incharge, Department of Animal Reproduction, Gynaecology and Obstetrics; Nagpur Veterinary College, MAFSU, Nagpur (MHS.).

The proposed research work, haematological and serum biochemical alterations in uterine inertia affected bitches were conducted at Veterinary Clinical Complex. The data relating to the present investigation were obtained from the obstetrical records of dystocia cases as well as from clinical cases of uterine inertia presented. Total 60 bitches irrespective of age, size and breed with the history and clinical signs of complete and partial primary uterine inertia chosen for the study. Physical examination and digital vaginal palpation in combination with diagnostic imaging were used to confirm the diagnosis. Blood samples were collected from all 60 bitches with both complete and partial uterine inertia in all five groups of bitches before treatment and after whelping to study the changes in levels of serum Calcium, Glucose, Phosphorus, Magnesium, Potassium, Sodium, BUN, Creatinine, Total Protein, Albumin estimations and hematological parameters viz. Hb, TLC, TEC, PCV and platelets.

Keywords: Bitches, Dystocia, Haematological, Serum biochemical, Uterine inertia.

Canine and feline reproductive and pediatric difficulties are commonly encountered emergencies due to a combination of factors, including small animal anatomy and owner ignorance. Dystocia is defined as the inability to expel foetuses through the birth canal and occurs in about 5 per cent of all parturitions in dogs (Linde-Forsberg and Eneroth, 2000). Primary uterine inertia is the most common reason of dystocia in the bitch approaching 75% of the cases. The condition is characterized by the failure of uterine muscle to expel normal sized foetuses through a normal birth canal, except an incompletely dilated where this is either completely absent, weak or infrequent. In partial primary inertia, the bitch may start to deliver her puppies, but the labor ends prematurely, despite the presence of a patent birth canal. The treatment may be medical or surgical (Van den Weijden and Taverne, 1994).

Calcium is the most important electrolyte regulating myometrial contractions. The myometrial resting membrane potential is generally -35 to -60 mV, being low during most of pregnancy and increasing near term (Sanborn, 2000). It has been proposed that hypoglycemia is the cause of primary uterine inertia, particularly in small breeds of bitches (Linde-Forsberg and Enerboth, 2000). The intravenous crystalloid solutions are administered to correct fluid, electrolyte and acid-base imbalances. The purpose of this study was to investigate if bitches with uterine inertia have low concentrations of any of the haematobiochemical substances in the blood and to evaluate the outcome of five medical treatments followed by caesarean section in unresponsive bitches.

Materials and Methods

Total 60 bitches irrespective of age, size and breed with the history and clinical signs of complete and partial primary uterine inertia were selected. Physical examination and digital vaginal palpation in combination
with diagnostic imaging were used to confirm
the diagnosis. The clinical cases of dystocia
presented were subjected to a detailed clinic-
occliterical examination to identify the cause
of dystocia. The causes of dystocia were
broadly categorized as foetal or maternal in
origin. Cases of maternal dystocia were
categorized into primary uterine inertia,
secondary uterine inertia and dystocia due to
gross abnormalities of the maternal birth
channel. The collected data was statistically
analyzed.

Complete primary Uterine Inertia

The diagnosis of dystocia due to
primary uterine inertia was made, if the
animal presented had a history of completion
of pregnancy term, complete absence or the
presence of very weak signs of first stage of
labor, and the presence of greenish or
blackish-green lochia on the perineum,
vulval or vestibule for at least two hours. In
some cases when the history was suggestive
of complete primary uterine inertia, but there
was no evidence of lochia in the perineum,
per vaginal examination was done with the
help of finger to identify presence of
discharge.

Partial primary uterine Inertia

The diagnosis of dystocia due to partial
primary uterine inertia was made, if the
second stage of labor had begun, one or more
pups had been delivered at least two hours
before, but subsequently either there was
complete absence of straining or the presence
of only weak efforts by the animal to expel
the puppies.

**Hematological and blood biochemical
investigations**

Blood samples were collected from all
60 bitches with both complete and partial
uterine inertia in all five groups of bitches
before treatment and after whelping to study
the changes in levels of serum Calcium,
Glucose, Phosphorus, Magnesium,
Potassium, Sodium, BUN, Creatinine, Total
Protein, Albumin estimations and
hematological parameters viz. Hb, TLC,
TEC, PCV and platelets.

Results and Discussion

Blood samples were obtained from 60
bitches suffering from uterine inertia to
investigate the changes in hematological and
serum biochemical parameters before the
administration of treatment and after normal
whelping or after successful caesarean section
within 6 hours of duration.

**Hematological changes before treatment
and after whelping**

During the present course of study,
various hematological parameters viz.
Hemoglobin, Total leucocyte count, Total
erthrocyte count, PCV and Platelets were
studied before the start of treatment and after
the completion of whelping or after the
successful caesarean section in all the bitches
suffering from uterine inertia. Out of total 60
cases of primary uterine inertia treated during
the course of present investigation, medical
therapy was successful in 20 bitches
(33.33%) and the remaining 40 animals
(66.67%) had to be subjected for caesarean
section due to failure of complete natural
whelping with the medical treatment.

<table>
<thead>
<tr>
<th>No of Bitches</th>
<th>Hb (gm/dL)</th>
<th>TLC(thousand /cumm)</th>
<th>TEC(millions /cumm)</th>
<th>PCV (%)</th>
<th>Platelets (Lakh/cumm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Before</td>
<td>After</td>
<td>Before</td>
</tr>
<tr>
<td>Complete uterine inertia (n=24)</td>
<td>9.68 ±0.17</td>
<td>8.13 ±0.16</td>
<td>18.36 ±0.59</td>
<td>17.31 ±0.63</td>
<td>6.24 ±0.27</td>
</tr>
<tr>
<td>Partial uterine inertia (n=36)</td>
<td>9.82 ±0.15</td>
<td>8.26 ±0.15</td>
<td>19.33 ±0.59</td>
<td>18.17 ±0.54</td>
<td>6.50 ±0.20</td>
</tr>
<tr>
<td>Overall mean</td>
<td>9.71 ±0.14</td>
<td>8.16 ±0.15</td>
<td>18.94 ±0.59</td>
<td>17.82 ±0.54</td>
<td>6.49 ±0.20</td>
</tr>
</tbody>
</table>

Indian Journal of Canine Practice
ISSN: 2277-6729 e-ISSN: 2349-4174
(http://creativecommons.org/licenses/by-nc/4.0/)
The differences in the hematological parameters were non-significant and the values were within normal physiological range. Therefore, it may be concluded that the mean hematological parameters do not change in complete or partial primary uterine inertia. In bitches. The mild decrease in the values of Hemoglobin, Total leukocyte count and platelet count recorded during and following the completion of surgery might have been due to splenic pooling of blood during the period of anesthesia. It is also possible that the marginal change in the hematological parameters recorded in the present study may be due to splenic pooling of blood during the period of anesthesia. Similarly it is also well known that the anaesthetic protocols, surgical stress and labour do affect these vital parameters, although transiently. The decreased volume of PCV at the time of whelping could be due to more litter size. The dam and fetuses have an increased metabolic demand and to meet this demand; maternal blood volume progressively increases by approximately 40 % during pregnancy. The increase in plasma volume is proportionally greater than the increase in erythrocytes leading to hemodilution and relative anemia as also mentioned by Pascoe and Moon, 2001).

Biochemical changes before treatment and after whelping

During the present course of study, the biochemical parameters studied were Blood Urea Nitrogen, Serum Creatinine, Serum Calcium, Serum Phosphorus, Serum Magnesium, Serum Potassium, Serum Sodium, Blood Glucose, Serum Total Proteins and Serum Albumin before the start of treatment and after the successful caesarean section in 60 uterine inertia bitches. The values in complete primary uterine inertia and partial primary uterine inertia are depicted in Table 2.

<table>
<thead>
<tr>
<th>Bitches N=60</th>
<th>Sodium (mmol/L)</th>
<th>Calcium (mg/dL)</th>
<th>Phosphorus (mg/dL)</th>
<th>Magnesium (mg/dL)</th>
<th>Potassium (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before After</td>
<td>Before After</td>
<td>Before After</td>
<td>Before After</td>
<td>Before After</td>
<td>Before After</td>
</tr>
<tr>
<td>Complete uterine inertia (n=24)</td>
<td>148.88 ±1.6 148.73 ±1.7</td>
<td>9.00 ±0.15 8.91 ±0.14</td>
<td>4.25 ±0.13 3.9 ±0.11</td>
<td>2.08 ±0.05 2.0 ±0.06</td>
<td>4.52 ±0.18 4.2 ±0.14</td>
</tr>
<tr>
<td>Partial uterine inertia (n=36)</td>
<td>148.85 ±1.19 148.27 ±1.19</td>
<td>9.49 ±0.19 9.32 ±0.17</td>
<td>4.8 ±0.18 4.7 ±0.16</td>
<td>2.0 ±0.05 2.0 ±0.06</td>
<td>4.2 ±0.12 4.2 ±0.14</td>
</tr>
<tr>
<td>Overall mean</td>
<td>148.86 ±0.96 148.45 ±0.97</td>
<td>9.29 ±0.13 9.16 ±0.12</td>
<td>4.6 ±0.13 4.4 ±0.12</td>
<td>2.0 ±0.03 2.0 ±0.04</td>
<td>4.3 ±0.10 4.2 ±0.10</td>
</tr>
</tbody>
</table>

The differences were non-significant and the values were within normal physiological range for sodium, calcium, potassium. Therefore, it was concluded that the mean concentration levels did not change in complete or partial primary uterine inertia bitches. On the other hand, Fomin et al., 2006 documented that Magnesium causes both smooth muscle relaxation and inhibition of myometrial contraction by both intracellular and extracellular mechanisms and therefore, Magnesium may be of importance when evaluating causes of dystocia. However, during the present investigation, the values of Magnesium in all the groups were normal physiological range. Therefore it was concluded that the cause of uterine inertia was at least not related to serum Magnesium levels in the present investigation.

Although the blood glucose