Molecular Diagnosis and Therapeutic Management of *Hepatozoon canis* Infection in Dogs

P.V. Tresamol*, K. Mery Rincy2, A. Arthi3, Usha N. Pillai4 and S. Ajithkumar5

1Professor, 2Research Assistant, 3M.V.Sc. Student, Department of Veterinary Epidemiology and Preventive Medicine, 4Professor and Head, Dept. of Clinical Medicine, 5Professor and Head, Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Mannuthy.

[Received: 13.06.2019; Accepted: 07.05.2022]

DOI: 10.29005/IJCP.2022.14.1.56-58

ABSTRACT

The present paper describes the diagnosis and therapeutic management of *Hepatozoon canis* in dogs. Two male Labrador dogs of 1 year age with history of weakness, lethargy and inappetance were presented to University Veterinary Hospital. Clinical examination revealed pale mucous membranes, enlargement of lymph nodes, weakness, lethargy and infestation of ticks (*Rhipicephalus sanguineus*). The blood smears examination showed typical gelatin capsule shaped gamonts within the neutrophils suggestive of *H. canis* in one dog, whereas, other dog was found negative. Low haematocrit values and thrombocytopenia were recorded in haematology. The species specific polymerase chain reaction assay targeting 18SrRNA gene yielded amplicons of 666 bp suggestive of *H. canis* from the DNA from the blood of both the dogs. Even though *H. canis* infection is generally in apparent in dogs, severe disease can occur in immunosuppressed dogs or those with concurrent infections. So control of vectors has to be considered as an important measure to reduce this vector borne disease.

Keywords: *Hepatozoon canis*, canine, PCR, Kerala

INTRODUCTION

Canine hepatozoonosis, tick borne hemoparasitic diseases, is caused by *Hepatozoon canis* and transmitted by infected tick vectors. *H. canis* infection ranges from a subclinical state with low level parasitaemia, to a severe lifethreatening illness with fever, lethargy, anaemia and emaciation in dogs with high parasitaemia (Banethand Weigler, 1997). Immunosuppression caused by concurrent diseases or other factors appears to play an important role in the manifestation of significant clinical signs. If parasitaemia is distinct, diagnosis of infection can readily be confirmed by demonstration of typical intracytoplasmic ellipsoidal-shaped gamonts within the neutrophils in blood smears (Ibrahim et al., 1989). Blood smear examination fails to demonstrate the parasite when parasitaemia is low or intermittent (Baneth and Shkap, 2003). Hence, the recent diagnostic techniques such as enzyme-linked immunosorbent assay, indirect fluorescent antibody test and PCR are employed also detect the low degree of *Hepatozoon* infection (Gonen et al., 2004; Li et al., 2008). Molecular method like PCR are considered as the most useful tool for diagnosis of subclinical and latent infections when the parasitaemia is low. The present paper discusses on molecular diagnosis and therapeutic management of *H. canis* infection in dogs.

MATERIALS AND METHODS

Two Labrador dogs of 1-year age belonging to police academy were presented to University Hospital, with history of weakness, lethargy and inappetance. After thorough clinical examination, blood samples were collected from peripheral veins of ear tip and subjected to Wet film examination and microscopic examination of blood smears after staining with Giemsa stain. The whole blood samples were also collected and genomic deoxyribonucleic acid (DNA) was extracted using commercial DNA extraction kits. The extracted DNA was used for species specific PCR for *H. canis* targeting 18SrRNA gene using primers, Hep F 5’-ATACATGAGCAAAAATCTCAAC-3’ and HepR 5’-CTTATTATCCATGCTGCAG-3’. The composition of PCR mix (25.0 µL) included 12.5 µl master mix, 1.5µL of 10 pmol primers, 1 µl of template DNA and 3.5 µl nuclease free water. The PCR programme was carried out in a thermocycler under the following conditions: initial denaturation at 95°C for 5 minutes, 35 cycles of amplification with denaturation at 95°C for 30 seconds, annealing at 57°C for 30 seconds and extension at 70°C for 1.30 minutes and final extension at 72°C for 5 min. The amplicons were visualized by gel electrophoresis on 1.0 per cent agarose and documented. The PCR products were sequenced and subjected to blast analysis.
RESULTS AND DISCUSSION

On basis of clinical examination and results of blood smear and PCR using species specific PCR for *H. canis*, the dogs were diagnosed with *H. canis* infection (Figs. 1 & 2). The haematology revealed anaemia and thrombocytopenia and the findings are in accordance with earlier investigations (Inokuma et al., 2002; Chhabra et al., 2013). Anemia was reported to be the most frequent hematological alteration associated with hepatozoonosis (Paiz et al., 2016). In this study, the PCR products were sequenced and the nucleotide sequence was submitted to Genbank and allotted accession number MF797806. Earlier, Singla et al. (2017) diagnosed *H. canis* infection in dogs by PCR in Punjab and sequence analysis of 18SrRNA gene revealed that *H. canis* detected in north Indian dogs might have closer ancestral relationship with Saint kitts and Nevis strain. The PCR assay is reported to detect parasite even in low parasitaemia because of its high sensitivity (Attipa et al., 2018).

The animals were successfully treated with single dose of Imidocarb dipropionate @ 6 mg/kg BW followed by parenteral administration of sulpha trimethoprim @ 15 mg/kg BW for five days along with haematinics and vitamin supplements as supportive therapy. Blood smear examination revealed no parasites after the course of treatment. No single drug was found to be effective for complete elimination of the organisms. Hence, combination of two or more drugs including imidocarb dipropionate, tetracycline, doxycycline, sulpha-trimethoprim, clindamycin or pyremethamine may be effective (Macintire et al., 2001). Sarma et al. (2012) reported successful treatment of *H. canis* infected dogs with combination therapy using doxycycline and oxytetracycline. Even though imidocarb dipropionate was considered as the specific drug for hepatozoonosis, it fails to eliminate *H. canis* when used as a sole therapy (Baneth, 2011). Prognosis often depends on the degree of parasitaemia and dogs with low parasitaemia typically respond well to treatment. But response to treatment may be poor in those with high parasitaemia and with concurrent illness.

In conclusion, the PCR assay is superior over blood smear examination for diagnosis of Hepatozoon canis infection in low parasitaemia dogs. Although *H. canis* infection is generally inapparent or subclinical in nature in dogs, the disease is manifested as severe form in immunocompromised dogs with concurrent infections. Therefore, control of vectors has to be considered as an important measure to reduce this vector borne disease. A further detailed study is warranted to assess the status of hepatozoonosis among canine population of Kerala.

REFERENCES

Volume 14 Issue 1, June, 2022
(http://creativecommons.org/licenses/by-nc/4.0/)

Smith, T.G. (1996). The genus Hepatozoon (Apicomplexa